WIND AND SOLAR ENERGY SYSTEMS

Course Code	19EE4702A	Year	IV	Semester	Ι
Course Category	Program Elective V	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

COURSE OUTCOMES						
Upon successful completion of the course, the student must be able to						
CO1	Understand the basics of wind energy, wind turbines, solar energy and grid					
	integration.					
CO2	Explain and classify wind turbines, instruments for measuring solar radiation,					
	solar collectors, solar cell and solar MPPT techniques					
CO3	Analyze different types of wind generators, solar cell and solar collectors					
CO4	Outline about integration of solar and wind energy systems					

(Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	1		2			3					2	3	2
CO2	3	2		3			3					2	3	2
CO3	3	1		3			3					2	3	2
CO4	3	1		3			2					2	3	2
CO5	3	1		2			3					2	3	2

	SYLLABUS					
Unit	Contents	Mapped				
No.		CO				
Ι	Wind energy Basics					
	History of wind power, Indian and Global statistics, Characteristics of					
	Wind, principles of wind energy conversion, components of wind energy	CO1				
	conversion system, classification of wind turbines- horizontal axis and					
	vertical axis, Betz limit ratio, advantages and disadvantages of wind energy					
	system.					
II	Wind turbine technologies					
	Review of modern wind turbine technologies, Fixed and Variable speed wind					
	turbine, Squirrel-cage Induction generator, Wound rotor motor induction	CO 1				
	generators, Doubly Fed Induction Generator, Synchronous Generators,	CO 3				
	Permanent Magnet Synchronous Generators and their characteristics.					

III	Solar Thermal	00.0
	Physics of the sun, the solar constant, extraterrestrial and terrestrial solar	CO 2
	radiation, solar radiation on titled surface, instruments for measuring solar	CO 3
	radiation and sun shine, solar radiation data.Flat plate and concentrating	
	collectors, classification of concentrating collectors, orientation and thermal	
	analysis, advanced collectors.	
IV	Solar photovoltaic	
	Photovoltaic energy conversion, solar cell fundamentals, solar cell	CO1
	classification- Amorphous, mono-crystalline, polycrystalline, performance of	CO2
	solar cell, V-I characteristics of a PV panel, Maximum Power point Tracking	CO 3
	(MPPT) algorithm	
V	Integration of solar and wind	
	Wind power integration into grid-power system stability, economics of grid	CO 1
	network, codes and standards for grid integration, grid connected PV	
	systems, control scheme used for single stage grid connected PV system, case	CU 4
	study on hybrid system(PV-Wind)	

Learning Resources						
Text	Text Books:					
1.	Non-Conventional Energy Sources by G.D. Rai, Khanna publishers, 5th edition, 2014.					
2.	Wind Energy Theory and Practice by Siraj Ahmed publisher PHI learning Pvt Ltd ,3rd					
	edition, 2016					
3.	Renewable Energy Sources and Emerging Technologies by D.P Kothari, K.C Singal,					
	RakeshRanjan, PHI learning Pvt Ltd, 2 nd edition, 2012					
Refe	rence Books:					
1.	Renewable Energy resources by Tiwari and Ghosal, publisher Narosa, 2005					
2.	Solar Photo Voltaics Fundamentals, Technology and application by Chetan Singh					
	Solanki, publisher PHI learning Pvt Ltd, 3 rd edition, 2019					
3.	Renewable Energy Resources by John Twidell and Tony Weir , publisher Taylor and					
	Francis, 2 nd edition 2006					